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The analysis of unit-root processes and cointegrated systems has played

a prominent role in econometrics and macroeconomics in the last decade,

with applications to diverse ¯elds such as macroeconomics, ¯nance, economic

history, international economics, etc. The reasons for such a rapid expansion

of the subject are its strong intuitive appeal and its highly involved technical

complexity. After a decade of the publication of the seminal work by Engle

and Granger (1987) cointegration and unit-root techniques have become

standard elements in every applied econometrician's toolkit. These notes

present an introductory and informal approach to the topic at the level

of any undergratuate book in econometrics. The subject well deserves a

detailed and rigurous study for which there are many specialized textbooks

discussed at the end of these notes.

1 Time Series. Stationarity

We are assuming some familiarity with the basic theory of stationary ARMA

process. In this section we review some basic concepts. A time series process

is a sequence of random variables ordered in time. The notation Yt stands

for the random variable variable Y at period t.

A process Yt is stationary if the following conditions hold:

1. E(Yt) = ¹ < 1 (constant mean)

¤These notes where written to be used in classes taught at University of Illinois at
Urbana-Champaign, University of San Andres, and National University of La Plata. Com-
ments welcome.
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2. Cov(Yt;Yt¡s) = °s < 1 (depends on s but not on t)

Actually this is weak stationarity1 or covariance stationarity, which

means that the ¯rst and second order moment structure of Yt is constant

over time. For s = 0 the second condition implies that a stationary process

has constant variance, V ar(Yt) = ¾2.

1.1 Some Examples:

1. White Noise: This is the simplest form a time series process can take.

The white note process is a zero mean, constant variance collection of

random variables which are uncorrelated over time. More speci¯cally,

Yt is a white noise process if Yt = "t

where:

(a) E("t) = 0

(b) V ar("t) = ¾2

(c) Cov("t; "t¡s) = 0 for all s; t; s 6= 0

Just by checking the properties of "t we see that the white noise process

is stationary.

2. The zero mean ¯rst order autorregresive process AR(1): Yt is a AR(1)

process with zero mean if:

Yt = ÁYt¡1 + "t

where "t is a white noise process as de¯ned above.

This process will be stationary if and only if jÁj < 1. It can be easily

checked that when this is so:

1. E(Yt) = 0

2. V (Yt) = ¾2=(1 ¡ Á2)

3. Cov(Yt;Yt¡j) = Áj¾2=(1 ¡Á2)

1In this notes we will restrict our atention to weak (as opposed to strong) stationarity
and will use `stationary' to mean weak stationarity, which su±ces for the purposes of this
notes. See Hamilton (1994) for details
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These properties can be veri¯ed by reexpresing Yt using repeated sub-

stitutions in the AR(1) model in the following way:

Yt = ÁYt¡1 + "t
= Á(ÁYt¡2+ "t¡1) + "t
= Á(Á(Yt¡3 + "t¡2) + "t¡1) + "t

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Yt = "t + Á"t¡1 +Á2"t¡2+ Á3"t¡3+ ¢ ¢ ¢
Yt =

P1
i=0 Ái"t¡i

Then, from the last expression we get:

(a) E(Yt) =
P1
i=0 ÁiE("t¡i) = 0

(b) V (Yt) =
P1
i=0 Á2iV ("t¡i) =

P1
i=1 Á2i¾2 = ¾2=(1 ¡Á2)

since Cov("t; "t¡s) = 0 for all s, t

(c) Cov(Yt;Yt¡s) =

The general AR(1) process is speci¯ed as Yt = ¹ + ÁYt¡1 + "t and it

can be easily veri¯ed that E(Yt) = ¹=(1 ¡ Á) and that the variance

and covariances are exactly the same as before.

2 Non-stationary processes

So far we have assumed that the series were stationary, which is a somewhat

unrealistic situation in most macroeconomic variables. Trivially, a non-

stationary process arises when one of the conditions for stationarity does

not hold.

2.1 Some examples:

1. The determistic trend process corresponds to:

Yt = a +dt + ut

where: a and d are parameters, t is a time index and ut is any zero

mean stationary process with variance ¾2. The deterministic trend

process presents stationary °uctuations around a linear trend. The

process is obviously non-stationary since its mean changes with time:
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E(Yt) = a +dt

Nevertheless, its variance is constant:

V (Yt) = V (ut) = ¾2

2. The random walk:

Yt = Yt¡1 + "t

where "t is a white noise process with variance ¾2. Note that this is

the zero mean AR(1) process with Á = 1. It can be easily checked

that E(Yt) = 0 and V (Yt) = t¾2

In order to obtain these results, assume that the process starts at
t = 0 and also assume that Y0 = 0. Then:

Y0 = 0
Y1 = Y0 + "1 = "1

Y2 = Y1 + "2 = "1 + "2

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

Yt = Yt¡1 + "t =
Pt

i=1 "i

and then take expectations and variance to obtain the results.

In this case even though the mean of the process is constant, its vari-
ance is not, it grows unboundedly over time, so the process is not
stationary.

3. The random walk with drift:

Yt = m +Yt¡1 + "t

where m is a parameter known as the `drift' and "t is a white noise
process.

Using repeated substitutions as in the previous case:

Y0 = 0
Y1 = m + Y0 + "1 = m + "1

Y2 = m + Y1 + "2 = 2m + "1 + "2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Yt = m + Yt¡1 + "t = tm +
Pt

i=1 "i
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we can easily see that in this case both the mean and the variance are
time dependent:

E(Yt) = tm

V (Yt) = t¾2

Note that now both the mean and the variance grow over time.

3 Unit Roots

The problem of testing for unit uoots was likely to be the one of the most

important and controversial topics in econometrics in the last decade. In

our simple framework testing for unit-roots means testing the hypothesis:

H0 : Á = 1 vs. HA : jÁj < 1

in the following general model:

Yt = m +ÁYt¡1 +dt + "t (1)

where "t is a white noise process.

It is easy to see that this general model contains all the previous examples

as special cases:

Case Process Parameters Hypothesis
about Á

1 AR(1) jÁj < 1; d = 0 Alternative
2 Deterministic Trend jÁj < 1; d 6= 0 Alternative
3 Random Walk Á = 1; d = m = 0 Null
4 Random Walk with drift Á = 1; d = 0 Null

The origin of the term `unit-root' can be seen by rewriting (1) in terms

of the lag operator L:

Yt(1 ¡ ÁL) = m + dt + "t

The polynomial (1 ¡ ÁZ), which is obtained by taking L as variable in

(1 ¡ ÁL), has a single root equal to 1=Á, which is equal to one if Á = 1.

Then, processes like 3 or 4 in the table are called unit-root processes.
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3.1 Why is it important to test for unit roots?

1. Stationary processes posess many interesting features that make them

desirable. Unit root tests can provide a test of whether a series is

stationary of not when used under d = 0. For example, if we test

Model 3 against Model 1, then the model is non-stationary under the

null hypothesis (a random walk) and stationary under the alternative

(an AR(1)).

2. Even though the realizations of a random walk with drift (model 4)

look much like the deterministic trend process, they have a completely

di®erent statistical structure. First, in the deterministic trend process

what is causing the non-stationarity is the presence of the time trend,

so by `removing' it we restore stationarity. In the random walk with

drift we have that both the mean and the variance vary over time. In

our simple case, if Yt is a random walk with drift:

Yt = m +Yt¡1 + "t

then substracting Yt¡1 in both sides we get:

¢Yt = m + "t

which is a stationary process (¢ is the di®erence operator). Then,

if Yt is a random walk with drift its ¯rst di®erence is a stationary

process, so the non-stationarity of Yt is `removed' by considering its

¯rst di®erence.

Second, consider the e®ect of a shock at time t ("t) s periods after it

took place. Using the same logic as before, lets write the random walk

with drift using repeated substitutions but this time forward:

Yt = m +Yt¡1 + "t
Yt+1 = m +Yt+ "t+1
Yt+2 = m +Yt+1 + "t+2 = 2m + Yt + "t+1 + "t
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Yt+s = m +Yt+s¡1 + "t+s = sm + Yt + "t+s + "t+s¡1+ ¢ ¢ ¢ + "t

In order to obtain a similar result for the deterministic trend process,

consider the case where ut follows a zero-mean AR(1) process: ut =
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Áut¡1. In this case, similar substitutions for the deterministic trend

process give:

Yt = a + dt +ut
Yt+1 = a + d(t + 1) + ut+1 = a+ d(t +1)+ Áut + "t
Yt+2 = a + d(t + 2) + ut+2 = a+ d(t +2)+ Á"t+1 +Á2"t
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Yt+s = a + d(t + s) +ut+s = a +d(t + s) + "t+s + Á"t+s¡1 + ¢ ¢ ¢ +Ás"t

Now consider the e®ect of a shock "t in Yt s periods ahead, that is,

@Yt+s=@"t. In the case of the random walk process this derivative is

equal to 1 while in the deterministic trend process this derivative is

Ás. When "t is stationary (jÁj < 0), the e®ect of "t on Yt+s tends

to zero when s tends to in¯nity whereas in the case of the random

walk with drift this e®ect remains constant. Then, in the case of the

deterministic trend process, the e®ect of a shock tends to wear out (is

transitory) while in the case of the random walk is permanent.

The main di®erences between these processes are summarized in the

following table:

Deterministic Trend Random Walk with Drift

1. Transformations to achieve stationarity
Detrend Di®erence

2. E®ects of shocks
Wears out Permanent

3. Variance
Bounded Unbounded

A test for unit roots may help determine which is the source of non-

stationarity. For example, if we test Model 4 against Model 2, then

the process is non-stationary under both the null and the alternative

hypothesis. But under the later the process has a deterministic trend

while under the former it has a stochastic trend. For example, in

the case of the GDP, economic theory suggest that is this series is a

growing process so testing for stationarity is not an issue. The point

is to determine what is the source of the non-stationarity.
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3. Spurious regressions: Suppose Yt and Xt are unit-root processes. In a

very in°uential paper, Granger and Newbold (1974) showed that the

regression between such series is very likely to be spurious in the sense

that it will present a high R2 and signi¯cant t-statistics even when

the series are completely unrelated. It was common practice to either

detrend or di®erence the variables to avoid the danger of spurious re-

gression. Unit root tests may help determine which procedure to apply

to achieve stationarity. It is important to remark that not every re-

gression between unit root processes is spurious. In fact, cointegration

analysis studies cases when this is not the case.

4 Testing for Unit-Roots

We will consider two simple cases frequently used in practice:

² Case 1: Test Ho : Á = 1 against HA : jÁj < 1 in:

Yt = ÁYt¡1+ ut (2)

In our examples, this corresponds to testing the random walk model

against the alterniative that the process follows a stationary zero mean

AR(1) process. Substracting Yt¡1 in both sides we get:

¢Yt = (Á ¡ 1)Yt¡1+ ut (3)

Then, testing Ho : Á = 1 in (2) is equivalent to testing Ho : (Á¡1) = 0

in (3).

It is tempting to estimate g in:

¢Yt = gYt¡1 +ut

by OLS (note that we do not include a constant in the regression)

and use a t-statistic to test H0 : g = 0. We would reject the null

hypothesis of the presence of a unit root when values of this statistic

are signi¯catively di®erent from zero. The problem is that even when

the ut's are taken to be independently normally distributed, under
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the null hypothesis the t-statistic of such a regression does not have

the usual t-distribution neither it has an asymptotic normal distribu-

tion. The distribution of this statistic for the case where the ut's are

uncorrelated was initially approximated by simulation by Dickey and

Fuller (1976) and later obtained analytically by Phillips (1987). For

practical purposes we can use Dickey-Fuller tables available in several

econometrics books.

Example 1 (Hamilton p.489): Interest rate

The goal is to test for a unit-root in the series of nominal interest
rate It . The following OLS regression was estimated:

¢It = ¡0:0031It¡1

(¡0:29)

The t-statistic lies above the 5% critical value according to the

(one-tailed) Dickey-Fuller table (-1.95), so the null hypothesis that

the interest rate follows a randow walk is not rejected by this test.

The inclusion of a constant (but not a trend) in this model serves

several purposes. Under the null hypothesis, the process can be a

random walk with drift (if the constant is di®erent from zero) or a

random walk (when the constant is zero). Under the alternative the

model is always a stationary AR(1) with zero mean (constant equal to

zero) or with mean di®erent from zero.

² Case 2: Test Ho : Á = 1 against HA : jÁj < 1 in:

Yt = m +ÁYt¡1 + dt + "t (4)

In our simple models, this corresponds to testing model 4 (random

walk with drift) against the deterministic trend model. That the model

under the null hypothesis corresponds to a deteriministic trend can be

veri¯ed as follows.

Rewrite (3) in terms of the lag operator:

Yt(1 ¡ ÁL) = m + dt + "t

Since jÁj < 1, the operator 1=(1 ¡ ÁL) is well de¯ned, so:

9



Yt =
m

1 ¡ Á
+

dt

1 ¡ ÁL
+

"t

1 ¡ ÁL

Now,

t=(1 ¡ ÁL) =
1X

i=0

Ái(t ¡ i) =
t

1 ¡ Á
¡ Á

(1 ¡ Á)2

replacing above:

Yt = ¹¤ +
dt

1 ¡ Á
+

"t

1 ¡ ÁL

where ¹¤ = [m(1 ¡ Á) ¡ dÁ]=(1 ¡ Á)2. Given jÁj < 1, "t=(1 ¡ ÁL)
is a stationary MA(1) process, then Yt has the speci¯cation of a
deterministic trend.

As mentioned before, we are not testing for stationarity here since
the model is non-stationary under both the null and the alternative
hypothesis. Instead we are trying to determine the source of the non-
stationarity. Substracting Yt¡1 in both sides we get:

¢Yt = m +(1 ¡Á)Yt¡1+ dt + "t (5)

and the testing procedure consists in testing H0 : g = 1 in the OLS
estimation of:

¢Yt = m + gYt¡1+ dt + "t

which now includes a constant and a time-trend.

4.1 The Augmented Dickey Fuller test

The original version of the Dickey-Fuller test assumes that the error terms

are uncorrelated. When serial correlation is present the `augmented Dickey-

Fuller' version of the test proposes to include in the regression several lags

of the di®erence of the series to account for the serial correlation. The test

procedure is the same as described before but we include in the regression

lags of the variable to account for possible serial correlation. A practical

questions is how many lags to include. There are many strategies but one

that is frequently used in practice is to start with several lags and estimate
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the Dickey-Fuller auxiliar regression and check the `t-statistic' of the esti-

mated coe±cients of the lagged di®erences and use this criterion to discard

irrelevant lags in a `general-to-particular' fashion.

Example 3 : GDP (Hamilton p. 489)

Here the idea is to test for a unit-root in the GDP (Yt). Economic
theory suggest that this should be a growing non-stationary process
a test of a unit root is a test to detect the source of non-stationarity.
The following OLS regression was estimated with four lags of the GDP
to account for possible serial correlation:

¢Yt = ¡:329¢Yt¡1 + :209¢Yt¡2 ¡ :084¢Yt¡3

¡ :075¢Yt¡4 + 35:92 ¡ :051Yt¡1 + :0378t

The t-statistic corresponding to the variable Yt¡1 is .051/ .0193 = -.26

which is greater than the Dickey-Fuller critical value at (one-tailed)

5% signi¯cante (-3.44). According to this, we do not reject the null

hypothesis that the GPD follows a random walk.

5 Cointegration

5.1 Basic Concepts

A series Yt is integrated of order d (denoted I(d)) if it must be di®erenced

at least d times in order to make it stationary.

Examples:

1. The random walk is I(1) since

Yt = Yt¡1 + "t =) ¢Yt = et

which is stationary.

2. Any stationary process is trivially I(0)

Two series Yt and Xt are said to be cointegrated if:

1. Both are I(d), d 6= 0 and the same for both series.
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2. There is a linear combination of them that is I(0), that is, there exist

a = (a1; a2) non zero such that:

a1Yt +a2Xt is I(0)

the vector a is called the cointegrating vector.

5.2 Discussion

² Cointegration refers to a relationship between non-stationary, unit-

root processes. The existence of a cointegration relationship between

two variables has the following economic intuition. When two series

are cointegrated it suggests that even though both processes are non-

stationary, there is some long-run equilibrium relationship linking both

series so that relationship is stationary. This long run relationship is

represented by the linear combination implicit in the cointegration

relationship. Economic theory often suggests the existence of such

relationships: the consumption function, the PPP, the theory of the

demand for money, etc.

² There is a basic non-uniqueness problem. If a is a cointegrating vec-

tor, then ba is also a contegrating vector, where b is any non-zero

scalar. Then it is customary to `normalize' the cointegrating vector by

imposign the condition a1 = 1. The `normalized' cointegrating vec-

tor will be (1; a2) and in this setup a2 is sometimes re®erd to as the

cointegration coe±cient.

² Going back to the spurious regression problem, with the concepts in-

troduced in this section it is more clear to see why regressions between

two non-stationary unit-root processes are likely to produce spurious

results. When two series Yt and Xt are I(1) and we impose the classical

linear model structure between them:

Yt = ® + ¯Xt +ut

where ut is a stationary I(0) random term, this makes sense only if the

series are cointegrated, that is, when there exists a linear combination

of the I(1) series that is I(0).

- Graphical example here -
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5.3 Testing for cointegration in the bivariate case

We will explore what is called the `Engle-Granger residual approach'. Here

the idea is to get an estimate of the cointegration coe±cient and then test

whether the linear combination formed with this coe±cient is I(0).

We proceed in three steps:

1. Step 1: Test that both variables have the same order of integration,

say, that they are both I(1). This can be performed with the unit-root

tests described before.

2. Step 2: Estimate a `long-run relationship':

Yt = â + b̂Xt

by OLS. Remember that we concluded that the classical analysis of a

series of this sort is invalid unless the series are cointegrated. Engle and

Granger (1987) showed that when this is the case, OLS in this equation

yields a consistent estimate of the cointegrating vector. Note that if

the series are cointegrated and that if â, and b̂ are `good' estimates

of the cointegrating coe±cients, then Yt ¡ â ¡ b̂Xt should be I(0).

The latter are, by de¯nition, the residuals of the OLS regression of

Yt on Xt and a constant, then we can use these residuals to test for

cointegration.

3. Extract the residuals of this regression (et) and test for a unit-root in

this series:

et has a unit root =) reject cointegration

Note that according to the way this test is speci¯ed, this is a test of

no-cointegration: acceptance of a unit root in the residuals suggest

that the residual term is non-stationary, which implies rejection of

cointegration. This may cause some confusion since acceptance of the

null of a unit root in the residuals suggest rejection of cointegration.
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5.4 Discussion

1. Try to compare what we are doing here with the speci¯cation tests in

classical econometrics. Even though the estimation stage proceeds in

the same way (OLS) we are interested in di®erent results. In the case

of cointegration analysis we are testing for stationary residuals while

in the context of the classical linear model we test for white noise

residuals.

2. We do not observe the cointegrating relationship directly. Instead we

use an estimate of it (the residuals of the estimation). Then, the

procedure of testing for a unit root in this series remains the same

but the usual Dickey-Fuller table is no longer valid. We have to use a

speci¯c table for this case. The same considerations apply regarding

the use of the augmented version of the Dickey-Fuller tests.

3. To obtain an estimate of the cointegrating vector we regressed one vari-

able on the other, but we could have inverted the order of the regression

and have obtained a di®erent result (unless, of course, R2 = 1). There

are some cases where this can produce contradictory results in terms

of the test for cointegration. Fortunately, a multivariate approach

handles this problem.

5.5 The multivariate case

We extend the analysis to more than two varibles (like in the money demand

example).

A vector Yt of n time series is said to be cointegrated if each of the series

taken individually is I(d) while some linear combination of the series a0Yt
is I(0) for some non-zero vector a. This vector is called the cointegrating

vector.

Now the problem of non-uniqueness persists after the normalization. It

can be shown that there might be at most n ¡ 1 linearly independent coin-

tegrating vectors. Then, any linear combination of these vectors is also a

cointegrating vectors. Hence, now the problem is to ¯nd a basis of the space

of cointegrating vectors.

There are several interesting aspects to test in the multivariate case. The

Johansen procedure (1990) is a multivariate extension of the Dickey Fuller
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test. A relevant question is not only if there is cointegration but how many

cointegrating relationships there are.

6 Suggested Bibliography

The literature on the topic is enourmous and constantly updated. Here are

some recent references.

The corresponding chapters of books like Greene (2000), Davidson and

MacKinnon (1993) or Hendry (1995) can give a quick overview of the topic.

Enders (1995) is a general introduction at an accesible level with abun-

dant empirical examples.

Banerjee, Dolado, Galbraith and Hendry (1993), Maddala and Kim

(1999) and Hamilton (1994) provide a detailed book-length treatement at a

graduate level.

The survey articles by Stock (1994) and Watson (1994) are useful sources

for advanced reading. Francisco Cribari (1995) has a good overview of cur-

rent research on the subject.

A humourous (and very illustrative) example is Murray (1994).
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